Sensory experience alters specific branches of individual corticocortical axons during development.

نویسندگان

  • Randy M Bruno
  • Thomas T G Hahn
  • Damian J Wallace
  • Christiaan P J de Kock
  • Bert Sakmann
چکیده

Sensory experience can, over the course of days to weeks, produce long-lasting changes in brain function. Recent studies suggest that functional plasticity is mediated by alterations of the strengths of existing synapses or dynamics of dendritic spines. Alterations of cortical axons could also contribute to functional changes, but little is known about the effects of experience at the level of individual corticocortical axons. We reconstructed individual layer (L) 2/3 pyramidal neurons filled in vivo in developing barrel cortex of control and partially sensory-deprived rats. L2 axons had larger field spans than L3 axons but were otherwise equivalently affected by deprivation. Whisker trimming over approximately 2 weeks markedly reduced overall length of axonal branches in L2/3, but individual horizontal axons were as likely to innervate deprived areas as spared ones. The largest effect of deprivation was instead to reduce the length of those axonal branches in L2/3 oriented toward deprived regions. Thus, the location of a branch relative to its originating soma, rather than its own location within any specific cortical column, was the strongest determinant of axonal organization. Individual axons from L2/3 into L5/6 were similarly altered by whisker trimming although to a lesser extent. Thus, sensory experience over relatively short timescales may change the patterning of specific axonal branches within as well as between cortical columns during development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex.

Small extracellular injections of HRP were placed into a stratum of corticocortical axons situated immediately deep to area 3b of the monkey somatic sensory cortex. This stratum had previously been demonstrated to contain corticocortical fibers linking the cytoarchitectonic fields of the somatic sensory cortex to one another and certain of them to the motor cortex. This method resulted in extre...

متن کامل

Sensory Experience Restructures Thalamocortical Axons during Adulthood

The brain's capacity to rewire is thought to diminish with age. It is widely believed that development stabilizes the synapses from thalamus to cortex and that adult experience alters only synaptic connections between cortical neurons. Here we show that thalamocortical (TC) inputs themselves undergo massive plasticity in adults. We combined whole-cell recording from individual thalamocortical n...

متن کامل

Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although a...

متن کامل

Auditory experience refines cortico-basal ganglia inputs to motor cortex via remapping of single axons during vocal learning in zebra finches.

Experience-dependent changes in neural connectivity underlie developmental learning and result in life-long changes in behavior. In songbirds axons from the cortical region LMAN(core) (core region of lateral magnocellular nucleus of anterior nidopallium) convey the output of a basal ganglia circuit necessary for song learning to vocal motor cortex [robust nucleus of the arcopallium (RA)]. This ...

متن کامل

The development of cortical connections.

The cortex receives its major sensory input from the thalamus via thalamocortical axons, and cortical neurons are interconnected in complex networks by corticocortical and callosal axons. Our understanding of the mechanisms generating the circuitry that confers functional properties on cortical neurons and networks, although poor, has been advanced significantly by recent research on the molecu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 10  شماره 

صفحات  -

تاریخ انتشار 2009